RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Department of Chemical Engineering ^a, Department of Energy and Mineral Engineering ^b, Energy Institute ^c, Institute of Energy and the Environment ^d

REFERENCES

[1] Okonsky, S. T.; JV, J. K.; Toraman, H. E. Kinetic Modelling and Measurement of Catalyst Deactivation for the Catalytic Co-Pyrolysis of PP and PET with HZSM-5. Available SSRN 4821598 2023.

[2] Okonsky, S. T.; Krishna, J. V. J.; Toraman, H. E. Catalytic Co-Pyrolysis of LDPE and PET with HZSM-5, H-Beta, and HY: Experiments and Kinetic Modelling. React. Chem. Eng. 2022, 7 (10), 2175–2191.

Sean Okonsky^{a,c}, <u>Do Hyun Lee^{b,c},</u> Matthew McAlister ^a, and Hilal Ezgi Toraman^{a-d} Incorporating Zeolite Desilication for the Catalytic Co-Pyrolysis of PP and PET Using HZSM-5

[3] Okonsky, S. T.; Hogan, N. R.; Toraman, H. E. Effect of Pyrolysis Operating Conditions on the Catalytic Co‐pyrolysis of Low‐density Polyethylene and Polyethylene Terephthalate with Zeolite Catalysts. AIChE J. 2024, e18548. [4] Verboekend, D.; Mitchell, S.; Milina, M.; Groen, J. C.; Pérez-Ramírez, J. Full Compositional Flexibility in the Preparation of Mesoporous MFI Zeolites by Desilication. J. Phys. Chem. C 2011, 115 (29), 14193–14203.

AKNOWLEDGEMENTS

Energy Efficiency & Renewable Energy

CONTACTS

John and Willie Leone Family **Department of Energy and Mineral Engineering**

- **PP and PET can coexist as unsorted or mixed in multilayer packaging in a waste stream** [1] **.**
- **PET can cause coke formation during catalytic pyrolysis** [2,3] **.**

Percent yields of C_2 - C_4 *olefins (left), BTEX (middle), and* C_9 - C_{20} *paraffins and olefins (right) for CBV8014 and Desilicated catalysts in their fresh, used, and regenerated state at 450 °C*

Desilicated fresh CBV 8014 showed a higher yield of C_2 **-** C_4 **olefins (30.0 – 30.7 wt%), compared to CBV 8014 (21.2 – 23.8 wt%).**

• The desilicated catalyst showed a lower decrease of C₂-C₄ olefin **yield at 450 °C and 500 °C, compared to CBV8014.**

catalyst regeneration increased the yield of C₂-C₄ olefins in comparison with the catalyst in their used state.

Thermogravimetric analyzer (TGA) Py- GCxGC – FID/MS "This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0007897" awarded to the REMADE Institute, a d ivision of Sustainab le Manufacturing Innovation Alliance Corp ".

Catalyst properties

Polymer weight percent (a, c) and derivative weight percent (b, d) curves for PP and PET with CBV8014 and Desilicated HZSM-5 catalysts, in their fresh (a, b) and used once (c, d) states

C2-C4 olefin yield for catalytic pyrolysis at 450 °C and 500 °C with fresh and used CBV8014 and Desilicated catalysts.

 \cdot \blacksquare \cdot CBV8014 $\overline{2}$ 25 Used Regenerated Fresh Fresh

Derivative weight percent curves for the catalytic co-pyrolysis of PP and PET with CBV8014 (left) and Desilicated (right) HZSM-5 in fresh, used, and regenerated state for each catalyst

• **The desilicated CBV 8014 increased the acidity and mesopore**

• **The desilicated CBV 8014 catalyst decreases the degradation**

- **volume, compared to parent catalyst.**
- **temperature of PP and PET.**
-
-
-
- **pyrolysis of PP and PET as feedstock.**

• **This research demonstrated that desilicated catalyst could enhance C2-C4 olefin yield and be durable in in-situ catalytic co-**

Corresponding author: Dr. Hilal Ezgi Toraman (hzt5148@psu.edu) Presenter: Do Hyun Lee (dxl5681@ psu.edu)

PennState College of Earth and Mineral Sciences

CONCLUSIONS