### Background

Successful surfactant flooding maximizes oil recovery by achieving ultralow IFTs at the optimal salinity (S\*), which is dependent on the equivalent alkane carbon number (EACN) of the oil pseudocomponent. Recent literature suggests that the EACN of oil mixtures does not follow the linear mixing rule.





**Fig. 1** - Does EACN follow a non-linear mixing rule? Data from Jang and Pope 2023.

"The simplest explanation is usually the best one" -Occam's Razor Philosophy

### **Objectives**

- $\succ$  Find an unbiased method to determine the optimal formulation conditions.
- $\succ$  Show that the linear mixing rule applies.
- $\succ$  Find the optimum surface with key formulation variables.



Salinity

Fig. 2 - Illustration of microemulsion phase behavior types.

From HLD-NAC Equation of State (for Type III): Planar



**Microemulsion Phase Behavior** 

# Reliable EACN Determination for Dead and Live Crudes in **Microemulsion Systems**

Hanif F. Yoga, Nijat Gasimli, and Russell T. Johns John and Willie Leone Family Department of Energy and Mineral Engineering and The EMS Energy Institute, The Pennsylvania State University

## **Unbiased Graphical Approach to Determine Optimum Salinity**



Fig. 3 - Comparison of the typical approach and the proposed unbiased approach to determine the optimum from salinity scan data. Data after Roshanfekr and Johns 2011.

### Method II Method I $\ln S^* = K(EACN) + \text{const.}$ $EACN = \sum x_i EACN_i$ Pure Alkane Pure x = 0.2Alkane Pure Alkane x = 0.4ln S Pure Crude Alkane EACN EACN

### Fig. 4 - Illustration of Methods I, II, and III (proposed) to determine the EACN of crude with unknown compositions. Method III is a combination of Methods I and II.





### **EACN Determination Methods**









**PennState** College of Earth and Mineral Sciences

John and Willie Leone Family Department of Energy and Mineral Engineering